
Web Application Security Standards and Practices

Page 1 of 14 Web Application Security Standards and Practices

Columbia University
Web Application Security Standards and Practices

Objective and Scope

Effective Date: January 2011

This Web Application Security Standards and Practices document establishes a baseline
of security related requirements for all Columbia University-supported web services and
websites, including Columbia University-branded applications supported/hosted by 3rd
parties.

This document is intended for personnel responsible for developing and supporting
Columbia University’s web applications, services, and websites. The purpose of this
document is to provide coding standards, which are based on accepted industry practices,
to minimize security exploits due to improper and nonstandard coding practices. It also
provides references to information about common web security vulnerabilities to enhance
understanding of the root causes of such issues and how to remediate them appropriately.

If you are responsible for developing and supporting Columbia University’s web
applications, services, and websites, you must adhere to the standards and practices
established by this document.

1. INTRODUCTION .. 2
2. THREAT RISK MODELING ... 3
3. WEB SECURITY STANDARDS .. 3
4. OWASP WEB APPLICATION SECURITY CHECKLIST .. 9
5. OWASP TOP 10 APPLICATION SECURITY RISKS ... 9
6. SANS TOP 25 MOST DANGEROUS SOFTWARE ERRORS ... 10
7. ADDITIONAL SECURITY BEST PRACTICES .. 11
8. REFERENCES .. 13

Web Application Security Standards and Practices

Page 2 of 14 Web Application Security Standards and Practices

1. Introduction

The materials presented in this document are obtained from the Open Web Application
Security Project (OWASP), the SANS (SysAdmin, Audit, Network, Security) Institute,
and other recognized sources of industry best practices.

OWASP is an open community dedicated to enabling organizations to develop, purchase,
and maintain applications that can be trusted. All of the OWASP tools, documents,
forums, and chapters are free and open to anyone interested in improving application
security.

SANS Institute was established as a cooperative research and education organization. At
the heart of SANS are the many security practitioners in varied global organizations from
corporations to universities working together to help the entire information security
community.

This document is divided into seven sections that cover the following topics:

Section Description
Threat Risk Modeling Brief description of approved threat risk

modeling methodologies to provide
context for the application of web security
standards described in the next section.

Web Security Standards Specifies coding standards and basic
security practices that must be followed
when developing and improving websites
and web applications.

OWASP Application Security Checklist A checklist of key items to review and
verify effectiveness.

OWASP Top 10 Application Security Risks Issues commonly identified as susceptible
to exploitation using well-known
techniques, and recommended remediation
approaches.

SANS Top 25 Most Dangerous Software
Errors

Commonly exploited coding mistakes and
recommended remediation approaches.

Additional Security Best Practices Supplemental security controls that may
optionally be considered.

References Hyperlinks to materials referenced within
this document and suggestions for further
reading.

You must read all sections and implement controls which are aligned with business and
operational requirements.

Web Application Security Standards and Practices

Page 3 of 14 Web Application Security Standards and Practices

If you are interested in using web application and website software scanning tools to scan
your website to identify potential vulnerabilities and exploits, please contact the CUIT
Security Office for assistance at security@columbia.edu. It is expected that you will take
the necessary actions to remediate exposures revealed by the scans.

2. Threat Risk Modeling

Before considering the specific security features and controls described in this document,
it is important to understand the context for the application of web security standards.
Security features and controls should be implemented to remediate meaningful risks to a
web application. Every system is different and you are the most knowledgeable about
your own system and the risks it faces. This section provides a brief description of CUIT-
approved threat risk modeling methodologies to assist you in first identifying and
prioritizing the risks that should drive your subsequent selection of web security features
and controls.

CUIT’s recommended threat risk modeling methodology is the OWASP Threat Risk
Model process:

http://www.owasp.org/index.php/Threat_Risk_Modeling

After you’ve performed the risk evaluation, you need to consider the controls to
implement. To determine the type of security control that is needed, you should apply
security control requirements using the Confidentiality, Integrity, Availability, and
Accountability (CIAA) methodology as follows:

1) Determine whether a security control mechanism is required to ensure the

Confidentiality, Integrity, Availability and/or Accountability of the data.

2) Using the CIAA approach, evaluate and rank the importance of each to prioritize

what and where control mechanisms should be applied.

3. Web Security Standards

This section lists the web security standards which must be implemented by CU
supported web applications, services, and sites.

Additionally, for web applications and websites that support e-commerce, you must read
and comply with “Section H Additional Protections for Credit Card Information” in the
University’s “Registration and Protection of Systems Policy”, which is described at:

http://policylibrary.columbia.edu/registration-and-protection-systems-policy

Web Application Security Standards and Practices

Page 4 of 14 Web Application Security Standards and Practices

3.1 Deny access for exception conditions

Handling errors securely is critical in secure coding; especially exceptions that occur in
the processing of a security control. It is important that these exceptions do not enable
behavior that the established control would normally not allow. There are only three
possible outcomes from a security mechanism:

1) allow the operation

2) disallow the operation

3) exception

In general, you must design your security mechanism so that a failure will follow the
same execution path as disallowing the operation. For example, security methods like
isAuthorized(), isAuthenticated(), and validate() should all return false if there is an
exception during processing.

3.2 Validate all inputs and sanitize all outputs

All input data must be validated, input data validation should occur in the following
sequence:

1) Decode the data before performing the validation – for example, check

input strings to prevent the program from executing malicious commands,
scripts, codes, etc.;

2) Check for length criteria - for example, determine if it is within the

allowable predetermined minimum and maximum range;

3) Check for acceptable data types - for example, determine if it is a valid
data type (e.g., characters or numbers only); and finally

4) Check for unacceptable data types – for example, determined whether data

entered is non-characters, non-numeric, special characters.

For a few data validation examples, see the OWASP data validation webpage
http://www.owasp.org/index.php/Data_Validation

All outputs must be sanitized to ensure outputs do not reveal too much information,
especially for error messages which can provide too much information (e.g., default
system generated messages) that an attacker can use to exploit security weaknesses. For
error handling of input data, the error message should not reveal too much information.

Web Application Security Standards and Practices

Page 5 of 14 Web Application Security Standards and Practices

For example, when there is an invalid user ID and/or password entered, the error message
should not reveal what component entered, whether it’s the user ID or password, which
caused the error. The message should be general (e.g., invalid entry) and not reveal more
information than necessary.

3.3 Maintain separation of duties

The concept of separation of duties is that the entity that approves an action, the entity
that carries out an action, and the entity that monitors that action must be distinct. The
goal is to eliminate the possibility of a single user from carrying out and concealing a
prohibited action.

In general, application administrators should not be users of the application because
application administrators inherit privileged access in the application. There are situations
where the application administrator is also an application user. In such scenario, maintain
separate accounts, one as the application administrator and one as the application user.
The use of the application administrator account must be used exclusively for authorized
administrative tasks only.

3.4 Verify all user authentication and authorization

There must be a security control mechanism to authenticate the identity of the user. This
is typically handled with a User ID account and a password. The password must be
sufficiently long and complex, consisting of alphanumeric characters and, if feasible,
special characters. Authentication can be achieved using Columbia UNI via CAS. See
the CAS website for more info http://cuit.columbia.edu/cas-authentication.

After the user is authenticated, a security control mechanism must also ensure that the
user’s access rights to the data must be limited to only his authorized access level.
Implement user access with the least privilege required.

3.5 Assign user with the least privilege access level

Access to resources must be granted with the least privilege to ensure that accounts have
the least amount of privilege required to perform their job function and responsibility.
This encompasses user rights and resource permissions, including file and database
permission. The user’s access rights and privileges must be limited to perform only tasks
that the user is authorized and not beyond his authority. Also, before the access is
granted, ensure that appropriate authorization is obtained from the requestor’s manager
and the data owner or data steward (i.e., a person who has been given the authority by the
data owner to approve data access on behalf of the owner).

For example, if the user only requires read access to the application, then this is all the
permission that should be granted. Under no circumstances should the user be allowed

Web Application Security Standards and Practices

Page 6 of 14 Web Application Security Standards and Practices

update privileges unless he has been explicitly authorized for both read and update
access.

3.6 Establish secure default settings

Security related parameters settings, including passwords, must be secured and not user
changeable. For example, by default, password length and complexity should be enabled
and not be changed by the user. Also, some applications are supplied with one or more
default user accounts and passwords. If these accounts are not used, then they should be
disabled or removed. If the default accounts are needed, then the default passwords must
be changed immediately to a new complex password.

If your application requires a default password either for the user to initially sign-on to
the application or in the event of a password reset for forgotten password, then the default
password must be a complex password and should be different for each user. The default
password should also have an expiration period (e.g., not valid more than 24 hours) and
onetime use only; thus, the system will force the user to change his password
immediately after using the default password.

3.7 Keep the attack surface area to a minimum

The system attack surface is the collection of input points that the application has for an
attacker. More points of entry into the application provide more avenues for an attacker
to find a weakness. Every feature that is added to an application adds a certain amount of
risk to the overall application. The aim for secure development is to reduce the overall
risk by reducing the attack surface area. Each feature must function accordingly to
application specification and business requirements and should not be allowed to perform
functions beyond its intended purpose.

3.8 Keep security simple and avoid security by obscurity

Attack surface area and simplicity go hand in hand. Some programmers prefer overly
complex approaches to what would otherwise be relatively straightforward and simple
code. Do not add complexity when simplicity will achieve the same results. You must
avoid the use of complex architectures when a simpler approach would be faster and
more efficient.

Using obscurity to provide security control always fails when it is the only control. This
is not to say that keeping secrets is a bad idea. It simply means that the security of key
systems should not be reliant upon keeping details hidden. In other words, security plus
obscurity is fine; obscurity by itself is not.

For example, the security of an application should not rely upon knowledge of the source
code being kept secret. The security should rely upon many other factors, including

Web Application Security Standards and Practices

Page 7 of 14 Web Application Security Standards and Practices

reasonable password policies and controls, defense in depth, transaction limits, network
access controls, and audit trails.

3.9 Provide defense in depth

Defense in depth is a concept where one control would be reasonable, more controls that
approach risks in different fashions are better. Controls, when used in depth, can make
severe vulnerabilities very difficult to exploit and thus unlikely to occur. The more
control layers, the more difficult it would be to circumvent them than a single control; but
you should also be mindful that security controls should not be too complex making them
difficult to manage and maintain.

With secure coding, this may take the form of combining controls from various elements
such as: tier-based validation, centralized auditing controls, and requiring user activity to
be logged.

3.10 Do not automatically trust access from other systems

Implicit trust of externally run systems is not warranted; therefore, system access
validation must be checked when a request is initiated by the external system. All
external systems should be treated in a similar fashion.

For example, when receiving requests from another system, the identity of the system
must be validated and the permission checked before processing the requests. If inputs
are received from the system, always validate the input before processing.

3.11 Maintain up-to-date security fixes and patches

Once security issues are identified, vendors will release security fixes or patches to
prevent exploits of the vulnerability. Therefore, you must constantly review the security
notifications and updates from the vendor and apply the security fixes and patches on a
timely basis.

3.12 Maintain Audit Logs

You will never be able to prevent every attack. No matter how good your defenses, some
things will slip through. It is critical that there be sufficient audit logs in place to be able
to discover that an attack occurred.

Audit Logging procedures must be documented. Audit logs recording user activities,
exceptions, and information security events must be produced.

Where technically feasible, recorded events must include: Security administration

Web Application Security Standards and Practices

Page 8 of 14 Web Application Security Standards and Practices

activities; Restricted account access; Logon/logoff success and failure; Unsuccessful
attempts to access systems or information; Dates and times of activity; Source of
connection and access.

Logs are a target and therefore, they must be secured. Wherever possible, lock down log
files so that only administrators have access to them. Ideally, spool logs to a separate log
server. If someone compromises a computer, the first thing they go after is the logs.

Logs must be protected to prevent the following: alterations to the recorded messages;
editing or deletion of log files; log storage capacity being exceeded; viewing of
confidential information in logs by unauthorized individuals;

Audit logs retention must meet business requirements.

3.13 Supplemental Web Security Standard Requirements

 Ensure that Web Server backups are regularly performed.

 Configure a secure web content directory by configuring anti-spambot protection;
if appropriate (e.g. CAPTCHAs') "No Follow" or other key word filtering.

 Ensure that a Web site requiring authenticated login deployment plan
addresses the following:

(a) The purpose(s) and function of the web server.

(b) The information categories that will be stored, processed, and/or transmitted
through the web server.

(c) The Security Requirements for this information, as well as any additional
services.

(d) Retrieval of information from or stored on another host (e.g. back-end
database, mail server, proxy server, etc.) along with the security requirements
needed on the alternate host.

(e) How information is to be published on the web server.

(f) Control access to data on the web server.

 For more information about Recommended Guidelines for web server controls

and configurations, please see http://cuit.columbia.edu/recommended-columbia-
university-web-environment

Web Application Security Standards and Practices

Page 9 of 14 Web Application Security Standards and Practices

4. OWASP Web Application Security Checklist

The ‘OWASP Application Security Verification Standards’ document provides a security
checklist of keys controls for you to verify.

These are a few examples of control points to check:

 Verify that all pages and resources require authentication except those specifically
intended to be public.

 Verify that all password fields do not echo the user’s password when it is entered,
and that password fields (or the forms that contain them) have autocomplete
disabled.

 Verify that sessions are invalidated when the user logs out.

 Verify that users can only access URLs for which they possess specific
authorization.

You must read and understand the ‘OWASP Application Security Verification Standards
- Web Application Standards’ document. Each item on the checklist is associated with
one or more verification level. The document describes the requirement for each
verification level.

https://www.owasp.org/index.php/Projects/OWASP_Application_Security_Verification_
Standard_Project

At a minimum, you must perform levels 1A and 1B verifications to ensure appropriate
security measures are implemented.

5. OWASP Top 10 Application Security Risks

The ‘OWASP Top 10 Web Application Security Risks’ and the ‘OWASP Top 10 Mobile
Risks’ documents which OWASP has identified the ten most critical web application
security and mobile risks and suggested remediation to implement.

These are a few examples of control points to check:

 Injection flaws, such as SQL, OS, and LDAP injection, occur when untrusted data
is sent to an interpreter as part of a command or query.

 Cross-Site Scripting (XSS) flaws occur whenever an application takes untrusted
data and sends it to a web browser without proper validation and escaping.

https://www.owasp.org/index.php/Projects/OWASP_Application_Security_Verification_Standard_Project

Web Application Security Standards and Practices

Page 10 of 14 Web Application Security Standards and Practices

 Cross-Site Request Forgery (CSRF) attack forces a logged-on victim’s browser to

send a forged HTTP request, including the victim’s session cookie and any other
automatically included authentication information, to a vulnerable web
application.

 Insecure direct object reference occurs when a developer exposes a reference to
an internal implementation object, such as a file, directory, or database key.

You must read and understand the ‘OWASP Top 10 Web Application Security Risks’
and the ‘OWASP Top 10 Mobile Risks’ documents. These are the areas where majority
of security exploits has been identified that can occur and therefore, preventive measures
must be implemented.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

You must implement the OWASP recommended remediation action items which
counteract the exploits and vulnerabilities.

6. SANS Top 25 Most Dangerous Software Errors

The SANS Top 25 list is another list that identifies the most prevalent software errors that
can result in exploits and vulnerabilities.

These are a few examples of control points to check:

 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow').

 Reliance on Untrusted Inputs in a Security Decision.

 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal').

 Unrestricted Upload of File with Dangerous Type.

http://www.sans.org/top25-software-errors/

You must review and implement the SANS recommended remediation action items
which counteract the exploits and vulnerabilities.

Web Application Security Standards and Practices

Page 11 of 14 Web Application Security Standards and Practices

7. Additional Security Best Practices

The following are additional security best practices that you should consider
implementing, if feasible.

 Provide a mechanism to ensure timeliness of data access. After the validation for
data access is performed, it is expected that the data would be used immediately.
However, if there is a time lapse between data access validation and data use, then
a re-validation must be performed before granting access. For example, there
should be a mechanism to monitor user inactivity time and require the user to re-
validate after exceeding the allowable threshold. This can assure that the person
has not walked away and an unauthorized person is using his account.

 Identify what permission level is actually required for database table access by the

application and limit access accordingly. For example, if the application only
requires read access, do not allow it update access. Implement least privilege
required even for the application.

 DBA should access the database the same way as the application to ensure

activity is logged and audited. DBA should access database via stored procedures
to track their activity.

 Separate the web server from the application server (i.e., the web server should be

physically or logically/virtually separate from the application server).

 Separate application from the database (i.e., the application server should be
physically or logically/virtually separate from the database server).

 When performing a security evaluation process, involve all parties from

technology, operational, and business areas with vested interest. Perform security
process assessment by examining each component in details:

1) Input control;
2) Output control;
3) Authentication control;
4) Authorization control;
5) Session management control;
6) Logging and auditing; and
7) Use of encryption.

 Keep security simple and configurable:

- Plan security configuration from the beginning;
- Separate users and administrator logins;
- Practice least privilege – even in development;

Web Application Security Standards and Practices

Page 12 of 14 Web Application Security Standards and Practices

- Configuration must be simple;
- Keep things secure by default;
- Configure logging levels;
- Clearly document all security configurations.

 Document program source codes and ensure that documentation is maintained and

kept up-to-date.

 Review log activity and audit the logs for exceptions.

Web Application Security Standards and Practices

Page 13 of 14 Web Application Security Standards and Practices

8. References

More information is available in the OWASP websites:

Secure Coding Principles

http://www.owasp.org/index.php/Secure_Coding_Principles

Application Security FAQ website

http://www.owasp.org/index.php/OWASP_AppSec_FAQ

Web Application Security Standards and Practices

Page 14 of 14 Web Application Security Standards and Practices

Version Tracking History

Change history comments

Version Date

Initial Web Security Standards and Practices document created by Larry Lee,
Joel Rosenblatt, Andrew Johnston, Carol Kassel, Josh Freeman, and IANS.

V1 1/11

Document updated by Larry Lee to include reference to OWASP Top 10
Mobile Risks. Document reviewed by Joel Rosenblatt, Marty Wren, Andrew
Johnston, Seth Theriault, and Joe Rini.

V1.1 12/12

Document updated by Larry Lee to replace reference to the former E-
Commerce: Electronic Protection of Credit Card Holder Information Policy
with the Registration and Protection of Systems Policy in section 3.

V1.2 12/13

Document updated by Larry Lee to replace WIND reference with CAS in
section 3.4 and also added section 3.13 Supplemental Web Security
Requirements with additional requirements recommended by Internal Audit.
Document reviewed by Elvira Spika, Jim Bossio, Joe Rini, Frank O’Donnell,
Joel Rosenblatt, and David Balducci

V1.3 11/14

